Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Planta ; 259(5): 120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607398

RESUMO

MAIN CONCLUSION: This study reveals miRNA indirect regulation of C4 genes in sugarcane through transcription factors, highlighting potential key regulators like SsHAM3a. C4 photosynthesis is crucial for the high productivity and biomass of sugarcane, however, the miRNA regulation of C4 genes in sugarcane remains elusive. We have identified 384 miRNAs along the leaf gradients, including 293 known miRNAs and 91 novel miRNAs. Among these, 86 unique miRNAs exhibited differential expression patterns, and we identified 3511 potential expressed targets of these differentially expressed miRNAs (DEmiRNAs). Analyses using Pearson correlation coefficient (PCC) and Gene Ontology (GO) enrichment revealed that targets of miRNAs with positive correlations are integral to chlorophyll-related photosynthetic processes. In contrast, negatively correlated pairs are primarily associated with metabolic functions. It is worth noting that no C4 genes were predicted as targets of DEmiRNAs. Our application of weighted gene co-expression network analysis (WGCNA) led to a gene regulatory network (GRN) suggesting miRNAs might indirectly regulate C4 genes via transcription factors (TFs). The GRAS TF SsHAM3a emerged as a potential regulator of C4 genes, targeted by miR171y and miR171am, and exhibiting a negative correlation with miRNA expression along the leaf gradient. This study sheds light on the complex involvement of miRNAs in regulating C4 genes, offering a foundation for future research into enhancing sugarcane's photosynthetic efficiency.


Assuntos
MicroRNAs , Saccharum , Transcriptoma/genética , Saccharum/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , MicroRNAs/genética
3.
Nanomicro Lett ; 16(1): 18, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975889

RESUMO

The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone. Constructing multifactorial, spatially oriented scaffolds to stimulate osteochondral regeneration, has immense significance. Herein, targeted drugs, namely kartogenin@polydopamine (KGN@PDA) nanoparticles for cartilage repair and miRNA@calcium phosphate (miRNA@CaP) NPs for bone regeneration, were in situ deposited on a patterned supramolecular-assembled 2-ureido-4 [lH]-pyrimidinone (UPy) modified gelation hydrogel film, facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands. This hydrogel film can be rolled into a cylindrical plug, mimicking the Haversian canal structure of natural bone. The resultant hydrogel demonstrates stable mechanical properties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3ß/ß-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.

4.
Adv Healthc Mater ; 12(30): e2302181, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673039

RESUMO

The pathophysiology of osteoarthritis (OA) is closely linked to autophagy abnormalities in articular chondrocytes, the sole mature cell type in healthy cartilage. Nevertheless, the precise molecular mechanism remains uncertain. Previous research has demonstrated that leptin activates mTORC1 , thereby inhibiting chondrocyte autophagy during the progression of OA. In this study, it is demonstrated that the presence of leptin induces a substantial increase in the expression of STAT3, leading to a notable decrease in REDD1 expression and subsequent phosphorylation of p70S6K, a recognized downstream effector of mTORC1. Conversely, inhibition of leptin yields contrasting effects. Additionally, the potential advantages of utilizing a sustained intra-articular release of a leptin inhibitor (LI) via an injectable, thermosensitive poly(D,L-lactide)-poly(ethylene glycol)-poly(D,L-lactide) (PDLLA-PEG-PDLLA: PLEL) hydrogel delivery system for the purpose of investigating its impact on cartilage repair are explored. The study conducted on LI-loaded PLEL (PLEL@LI) demonstrates remarkable efficacy in inhibiting OA and displays encouraging therapeutic advantages in the restoration of subchondral bone and cartilage. These findings establish a solid foundation for the advancement of a pioneering treatment approach utilizing PLEL@LI for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Autofagia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Preparações de Ação Retardada/farmacologia , Hidrogéis/farmacologia , Leptina/antagonistas & inibidores , Leptina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Osteoartrite/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Regeneração
5.
Nat Commun ; 14(1): 3661, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339946

RESUMO

Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots. Comparing the genomes of Ac. gramineus and Ac. calamus, we suggest that Ac. gramineus is not a potential diploid progenitor of Ac. calamus, and Ac. calamus is an allotetraploid with two subgenomes A, and B, presenting asymmetric evolution and B subgenome dominance. Both the diploid genome of Ac. gramineus and the subgenomes A and B of Ac. calamus show clear evidence of whole-genome duplication (WGD), but Acoraceae does not seem to share an older WGD that is shared by most other monocots. We reconstruct an ancestral monocot karyotype and gene toolkit, and discuss scenarios that explain the complex history of the Acorus genome. Our analyses show that the ancestors of monocots exhibit mosaic genomic features, likely important for that appeared in early monocot evolution, providing fundamental insights into the origin, evolution, and diversification of monocots.


Assuntos
Acorus , Tetraploidia , Filogenia , Diploide , Genoma
6.
Nat Plants ; 9(4): 554-571, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997685

RESUMO

A diploid genome in the Saccharum complex facilitates our understanding of evolution in the highly polyploid Saccharum genus. Here we have generated a complete, gap-free genome assembly of Erianthus rufipilus, a diploid species within the Saccharum complex. The complete assembly revealed that centromere satellite homogenization was accompanied by the insertions of Gypsy retrotransposons, which drove centromere diversification. An overall low rate of gene transcription was observed in the palaeo-duplicated chromosome EruChr05 similar to other grasses, which might be regulated by methylation patterns mediated by homologous 24 nt small RNAs, and potentially mediating the functions of many nucleotide-binding site genes. Sequencing data for 211 accessions in the Saccharum complex indicated that Saccharum probably originated in the trans-Himalayan region from a diploid ancestor (x = 10) around 1.9-2.5 million years ago. Our study provides new insights into the origin and evolution of Saccharum and accelerates translational research in cereal genetics and genomics.


Assuntos
Saccharum , Saccharum/genética , Diploide , Genômica , Poaceae/genética , Poliploidia , Genoma de Planta
7.
Redox Biol ; 61: 102635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870110

RESUMO

Glutathione S-transferase P1(GSTP1) is known for its transferase and detoxification activity. Based on disease-phenotype genetic associations, we found that GSTP1 might be associated with bone mineral density through Mendelian randomization analysis. Therefore, this study was performed both in vitro cellular and in vivo mouse model to determine how GSTP1 affects bone homeostasis. In our research, GSTP1 was revealed to upregulate the S-glutathionylation level of Pik3r1 through Cys498 and Cys670, thereby decreasing its phosphorylation, further controlling the alteration of autophagic flux via the Pik3r1-AKT-mTOR axis, and lastly altering osteoclast formation in vitro. In addition, knockdown and overexpression of GSTP1 in vivo also altered bone loss outcomes in the OVX mice model. In general, this study identified a new mechanism by which GSTP1 regulates osteoclastogenesis, and it is evident that the cell fate of osteoclasts is controlled by GSTP1-mediated S-glutathionylation via a redox-autophagy cascade.


Assuntos
Glutationa Transferase , Osteogênese , Animais , Camundongos , Fosforilação , Fatores de Transcrição , Autofagia , Oxirredução
8.
Orthop Surg ; 14(10): 2580-2590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36065574

RESUMO

OBJECTIVE: This study is aimed to investigate the clinical outcomes of a novel SSPS for fixation of the comminuted coronoid fracture. METHODS: A retrospective study was carried out in the patients with comminuted fractures of the coronoid treated by SPSS fixation between January 2014 and December 2018. A total of 17 patients (17 sides) was included in our study, including 11 male and six female, with a mean age range from 18 to 60. All cases started to functional rehabilitation immediately after the operation. Clinical outcomes were evaluated both radiographically and functionally at the follow-up visit, including the elbow instability, range of motion and Mayo elbow performance score (MEPS). RESULTS: According to the O'Driscoll classification system, there was two side of type 1.2, two of type 2.1, four of type 2.2, three of type 2.3, two of 3.1 and four of type 3.2. The surgery was carried out by Kocher and anteromedial approach in 12 patients, posterior and anteromedial approach in four, anterior approach in one. The average operation time and intraoperative blood loss was 129.41±43.87 min and 115.29±104.65 ml. The median follow-up time was 9 months (range, 6 to 15 months). The mean flexion, extension, pronation and supination motion was 138.76±8.67 degrees, 20.00±13.58, 82.94±5.32and 74.12±14.39 respectively at final follow up. The mean MEPS score was 89.76±8.46, including 11 excellent, 3 good and 3 fair result. The mean VAS score was 1.94±0.97. The mean union time of coronoid fractures was 2.77±0.31 months according to the established standard of healing. There were no significant differences in clinical outcomes among groups according to the O'Driscoll classification (P > .05) and ligament repair strategy (P > .05). No patient underwent instability or dislocation of the elbow during follow up. There were two cases with mild ulnar nerve symptoms which recovered totally at follow up. Meanwhile, there were three cases with heterotopic ossification of the elbow. CONCLUSION: Our findings demonstrated that the SSPS can provide a reliable fixation for the comminuted coronoid fracture with satisfactory clinical outcomes.


Assuntos
Articulação do Cotovelo , Fraturas Cominutivas , Instabilidade Articular , Fraturas da Ulna , Cotovelo , Articulação do Cotovelo/cirurgia , Feminino , Fixação Interna de Fraturas , Fraturas Cominutivas/diagnóstico por imagem , Fraturas Cominutivas/cirurgia , Humanos , Instabilidade Articular/cirurgia , Masculino , Amplitude de Movimento Articular , Estudos Retrospectivos , Suturas , Resultado do Tratamento , Fraturas da Ulna/diagnóstico por imagem , Fraturas da Ulna/cirurgia
9.
Nat Genet ; 54(6): 885-896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654976

RESUMO

Saccharum spontaneum is a founding Saccharum species and exhibits wide variation in ploidy levels. We have assembled a high-quality autopolyploid genome of S. spontaneum Np-X (2n = 4x = 40) into 40 pseudochromosomes across 10 homologous groups, that better elucidates recent chromosome reduction and polyploidization that occurred circa 1.5 million years ago (Mya). One paleo-duplicated chromosomal pair in Saccharum, NpChr5 and NpChr8, underwent fission followed by fusion accompanied by centromeric split around 0.80 Mya. We inferred that Np-X, with x = 10, most likely represents the ancestral karyotype, from which x = 9 and x = 8 evolved. Resequencing of 102 S. spontaneum accessions revealed that S. spontaneum originated in northern India from an x = 10 ancestor, which then radiated into four major groups across the Indian subcontinent, China, and Southeast Asia. Our study suggests new directions for accelerating sugarcane improvement and expands our knowledge of the evolution of autopolyploids.


Assuntos
Saccharum , Cromossomos , Genoma de Planta/genética , Genômica , Ploidias , Saccharum/genética
10.
Chin Med ; 17(1): 34, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248101

RESUMO

BACKGROUND: Excessive osteoclast activation is an important cause of imbalanced bone remodeling that leads to pathological bone destruction. This is a clear feature of many osteolytic diseases such as rheumatoid arthritis, osteoporosis, and osteolysis around prostheses. Because many natural compounds have therapeutic potential for treating these diseases by suppressing osteoclast formation and function, we hypothesized that α-mangostin, a natural compound isolated from mangosteen, might be a promising treatment as it exhibits anti-inflammatory, anticancer, and cardioprotective effects. METHODS: We evaluated the therapeutic effect of α-mangostin on the processes of osteoclast formation and bone resorption. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) induces osteoclast formation in vitro, and potential pathways of α-mangostin to inhibit osteoclast differentiation and function were explored. A mouse model of lipopolysaccharide-induced calvarial osteolysis was established. Subsequently, micro-computed tomography and histological assays were used to evaluate the effect of α-mangostin in preventing inflammatory osteolysis. RESULTS: We found that α-mangostin could inhibit RANKL-induced osteoclastogenesis and reduced osteoclast-related gene expression in vitro. F-actin ring immunofluorescence and resorption pit assays indicated that α-mangostin also inhibited osteoclast functions. It achieved these effects by disrupting the activation of NF-κB/mitogen-activated protein kinase signaling pathways. Our in vivo data revealed that α-mangostin could protect mouse calvarial bone from osteolysis. CONCLUSIONS: Our findings demonstrate that α-mangostin can inhibit osteoclastogenesis both in vitro and in vivo and may be a potential option for treating osteoclast-related diseases.

11.
Stem Cells Int ; 2022: 7538025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222648

RESUMO

Intervertebral disc (IVD) degenerative disease is a common health problem worldwide. Administration of mesenchymal stem cells (MSCs) in intervertebral disc degeneration (IVDD) has been widely explored in recent years. However, transplantation of MSCs is restricted by several factors. Currently, paracrine signaling is one of the main mechanisms by which MSCs play a therapeutic role in disc regeneration. Extracellular vehicles (EVs) are the main paracrine products of MSCs. They show great potential as an effective alternative to MSCs and play immunomodulation roles such as anti-inflammatory effects, antioxidative stress, antiapoptosis, and antiextracellular matrix (ECM) degradation during treatment of IVDD. This review focuses on the immunomodulatory effect of MSC EVs and their potential applications.

12.
Orthop Surg ; 14(3): 501-512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098687

RESUMO

OBJECTIVE: To tackle the challengeable dilemma of delayed femoral fracture, a technique of fixator-assisted closed reduction and intramedullary nailing at one stage was introduced herein and its clinical results were investigated. METHODS: A retrospective study was conducted on delayed femoral shaft fracture between February 2008 and January 2017. The multiple injured patients aged from 18 to 60 years with delayed femoral fracture was included. All patients were treated by one-stage internal fixation technique and followed up for more than 1 year. Outcome measures including the operation time, intraoperative blood loss and limb alignment, healing time of fracture, visual analog scale (VAS), and range of knee motion were recorded and evaluated. RESULTS: A total of 13 patients (16 sides) with a mean injury severity score (ISS) of 32.77 ± 9.98 (range, 19 to 52) participated in the investigation. The median length of time-after-fracture was 38 days (range, 21 to 110 days). The average shortening distance of the fracture ends was 35.48 ± 19.24 mm (range, 10.00 to 79.00 mm). The average surgery time was 192.19 ± 29.38 min for unilateral femoral fracture, with blood loss of 587.50 ± 232.02 ml. The postoperative discrepancy of lower limb was 3.87 ± 2.52 mm. No patient had vascular and neurologic complications due to the lengthening. All fractures healed successfully with a mean time of 2.98 ± 0.57 months. The mean VAS and maximal knee flexion were 1.63 ± 1.09 and 131.25° ± 5.32° at final follow-up, respectively. CONCLUSIONS: Our findings indicated that fixator-assisted closed reduction and intramedullary nailing at one stage is an effective treatment for delayed femoral fracture with satisfactory functional recovery.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Adolescente , Adulto , Pinos Ortopédicos , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/efeitos adversos , Consolidação da Fratura , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
13.
Biomed Mater Eng ; 33(1): 65-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34366316

RESUMO

BACKGROUND: Cartilage tissue lacks the ability to heal. Cartilage tissue engineering using cell-free scaffolds has been increasingly used in recent years. OBJECTIVE: This study describes the use of a type I collagen scaffold combined with WNT5A plasmid to promote chondrocyte proliferation and differentiation in a rabbit osteochondral defect model. METHODS: Type I collagen was extracted and fabricated into a collagen scaffold. To improve gene transfection efficiency, a cationic chitosan derivative N,N,N-trimethyl chitosan chloride (TMC) vector was used. A solution of TMC/WNT5A complexes was adsorbed to the collagen scaffold to prepare a WNT5A scaffold. Osteochondral defects were created in the femoral condyles of rabbits. The rabbits were divided into defect, scaffold, and scaffold with WNT5A groups. At 6 and 12 weeks after creation of the osteochondral defects, samples were collected from all groups for macroscopic observation and gene expression analysis. RESULTS: Samples from the defect group exhibited incomplete cartilage repair, while those from the scaffold and scaffold with WNT5A groups exhibited "preliminary cartilage" covering the defect. Cartilage regeneration was superior in the scaffold with WNT5A group compared to the scaffold group. Safranin O staining revealed more proteoglycans in the scaffold and scaffold with WNT5A groups compared to the defect group. The expression levels of aggrecan, collagen type II, and SOX9 genes were significantly higher in the scaffold with WNT5A group compared to the other two groups. CONCLUSIONS: Type I collagen scaffold showed effective adsorption and guided the three-dimensional arrangement of stem cells. WNT5A plasmid promoted cartilage repair by stimulating the expression of aggrecan, type II collagen, and SOX9 genes and proteins, as well as inhibiting cartilage hypertrophy.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Animais , Colágeno Tipo I , Plasmídeos , Coelhos , Tecidos Suporte
14.
Front Cell Dev Biol ; 9: 647166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900977

RESUMO

Objectives: Repairing articular cartilage damage is challenging. Clinically, tissue engineering technology is used to induce stem cell differentiation and proliferation on biological scaffolds to repair defective joints. However, no ideal biological scaffolds have been identified. This study investigated the effects of amniotic membrane/collagen scaffolds on the differentiation of adipose-derived stem cells (ADSCs) and articular cartilage repair. Methods: Adipose tissue of New Zealand rabbits was excised, and ADSCs were isolated and induced for differentiation. An articular cartilage defect model was constructed to identify the effect of amniotic membrane/collagen scaffolds on cartilage repair. Cartilage formation was analyzed by imaging and toluene blue staining. Knee joint recovery in rabbits was examined using hematoxylin and eosin, toluidine, safranine, and immunohistochemistry at 12 weeks post-operation. Gene expression was examined using ELISA, RT-PCR, Western blotting, and immunofluorescence. Results: The adipose tissue was effectively differentiated into ADSCs, which further differentiated into chondrogenic, osteogenic, and lipogenic lineages after 3 weeks' culture in vitro. Compared with platelet-rich plasmon (PRP) scaffolds, the amniotic membrane scaffolds better promoted the growth and differentiation of ADSCs. Additionally, scaffolds containing the PRP and amniotic membrane efficiently enhanced the osteogenic differentiation of ADSCs. The levels of COL1A1, COL2A1, COL10A1, SOX9, and ACAN in ADSCs + amniotic membrane + PRP group were significantly higher than the other groups both in vitro and in vivo. The Wakitani scores of the ADSC + amniotic membrane + PRP group were lower than that in ADSC + PRP (4.4 ± 0.44**), ADSC + amniotic membrane (2.63 ± 0.38**), and control groups (6.733 ± 0.21) at week 12 post-operation. Osteogenesis in rabbits of the ADSC + amniotic membrane + PRP group was significantly upregulated when compared with other groups. Amniotic membranes significantly promoted the expression of cartilage regeneration-related factors (SOX6, SOX9, RUNX2, NKX3-2, MEF2C, and GATA4). The ADSC + PRP + amniotic membrane group exhibited the highest levels of TGF-ß, PDGF, and FGF while exhibiting the lowest level of IL-1ß, IL6, and TNF-α in articular cavity. Conclusion: Amniotic membrane/collagen combination-based scaffolds promoted the proliferation and cartilage differentiation of ADSCs, and may provide a new treatment paradigm for patients with cartilage injury.

15.
Drug Deliv ; 28(1): 2548-2561, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34854786

RESUMO

Effective and accurate delivery of drugs to tissue with spinal cord injury (SCI) is the key to rehabilitating neurological deficits. Sustained-release microspheres (MS) have excellent degradability and can aid in the long-term release of drugs. However, the burst release phenomenon can cause unexpected side effects. Herein, we developed and optimized an injectable poly(lactic-co-glycolic acid) (PLGA) MS loaded with melatonin(Mel), which were mixed further with Laponite hydrogels (Lap/MS@Mel, a micro-gel compound) in order to reduce the burst release of MS. Thus, these MS were able to achieve stable and prolonged Mel release, as well as synergistic Lap hydrogel in order to repair neural function in SCI by in situ injection. In clinical practice, patients with SCI have complicated conditions and significant inter-individual differences, which means that a single route of administration does not meet actual clinical needs. Thus, the nanospheres are synthesized and subsequently coated with platelet membrane (PM) in order to form PM/MS@Mel (nano-PM compound) for sustained and precision-targeted delivery of Mel intravenously in the SCI. Notably, optimized microsphere delivery systems have improved Mel regulation polarization of spinal microglial/macrophages, which can reduce loss of biomaterials due to macrophage-induced immune response during implantation of spinal cord tissue. These two new delivery systems that are based on MS provide references for the clinical treatment of SCI, according to different requirements.


Assuntos
Portadores de Fármacos/química , Melatonina/administração & dosagem , Melatonina/farmacologia , Microesferas , Animais , Química Farmacêutica , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Hidrogéis/química , Nanosferas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal
16.
JAMA Netw Open ; 4(8): e2119132, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34342651

RESUMO

Importance: Host immune dysregulation is associated with initiation and development of osteosarcoma. In addition, immunotherapy for osteosarcomas requires some knowledge of the immune state of patients. Objective: To perform an immunogenomic landscape analysis based on The Cancer Genome Atlas (TCGA) project, which provides osteosarcoma samples with clinical information. Design, Setting, and Participants: This genetic association study was conducted from July 20, 2020, to September 20, 2020, as a secondary analysis of public data. Cox regression and risk score analyses were used to construct signatures of immune-related genes (IRGs) in 84 patients with osteosarcoma from TCGA with corresponding clinical information. Patients were divided into high- and low-risk groups with 42 individuals in each group according to their risk scores. Data were analyzed from July 20 to September 20, 2020. Main Outcomes and Measures: Differentially expressed genes (DEGs) were analyzed between groups, and potential molecular mechanisms, expression regulation, and immune cell infiltration were also explored using bioinformation methods. A prognostic model based on independent risk factors selected from multivariate Cox hazard ratio regression was established to estimate 1-year overall survival. Results: In this genetic association study based on 84 samples from patients with osteosarcoma from TCGA (mean [SD] age, 15.0 [4.8] years; 47 [56.0%] men; mean [SD] follow-up time, 4.1 [2.8] years), a total of 14 survival-associated IRGs were identified. Patients assigned to the high-risk group had worse survival than patients from the low-risk group (1 death [2.4%] vs 26 deaths [61.9%%]; P < .001). The protein digestion and absorption pathway was one of the associated pathways in the functional enrichment analysis (gene ratio, 2:8; P < .001). The prognostic model based on metastases at diagnosis and risk score performed well in 1-year overall survival estimations (area under the curve, 0.947; 95% CI, 0.832-0.972). The risk score was correlated with immune cell infiltration (B cells: r = 0.331; P = .002; macrophages: r = 0.410; P < .001; CD8 T cells: r = 0.230; P = .04). Conclusions and Relevance: This genetic association study developed a prognostic modeling tool for osteosarcoma based on IRG expression profiles, which could result in improved survival rates through more individualized therapies. Further research on IRG expression profiles could provide potential targets for future studies on immune treatment for osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Imunoproteínas/genética , Osteossarcoma/genética , Adolescente , Neoplasias Ósseas/mortalidade , Biologia Computacional , Feminino , Estudos de Associação Genética , Humanos , Masculino , Osteossarcoma/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Taxa de Sobrevida , Adulto Jovem
17.
Front Cell Dev Biol ; 9: 650846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414176

RESUMO

Accumulating evidence suggests that extracellular signal-regulated kinase (ERK) is a valuable target molecule for cancer. However, antitumor drugs targeting ERK are still in their clinical phase and no FDA-approved medications exist. In this study, we identified an ERK inhibitor (ERKi; Vx-11e) with potential antitumor activities, which was reflected by the inhibition in the survival and proliferation of Osteosarcoma (OS) cells. Mechanistically, the ERKi regulated autophagic flux by promoting the translocation of transcription factor EB (TFEB) in OS cells, thereby increasing the dependence of OS cells on autophagy and sensitivity to treatment with autophagy inhibitors in OS. Besides, we also found that the ERKi could regulate mitochondrial apoptosis through the ROS/mitochondria pathway and aerobic glycolysis in OS, which also increases the dependence of OS cells on autophagy to clear metabolites to a certain extent. These results may provide a reference for the clinically improved efficacy of ERKis in combination with autophagy inhibitors in the treatment of OS and indicate its potential as a therapeutic agent.

18.
J Tissue Eng Regen Med ; 15(7): 612-624, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843153

RESUMO

Noncanonical Wnt5a is a particularly attractive growth factor to maintain chondrogenesis. Platelet-rich plasma (PRP) is an autologous blood-derived product and a source of bioactive growth factors involved in tissue regeneration. The present study aimed to investigate the effect and inflammation reaction of Wnt5a/PRP on meniscus cells, and evaluate meniscus regeneration and osteoarthritis (OA) prevention by the application of Wnt5a/PRP gel in a rabbit model of massive meniscal defect. In vitro, the proliferation, migration, differentiation, and interleukin-1 beta (IL-1ß) IL-1ß-induced inflammation reaction of meniscus cells treated by Wnt5a and PRP was assessed. In vivo, the anterior half of the medial meniscus of 18 New Zealand rabbits was excised and implanted with PRP gel, Wnt5a/PRP gel or untreated. After 6 and 12 weeks, the regenerated meniscus were evaluated. Wnt5a can promote the migration of meniscus cells. PRP and Wnt5a had synergistic effect in promoting the proliferation and chondrogenic differentiation of meniscus cells. The IL-1ß-induced meniscus cells study showed that PRP and Wnt5a had the anti-inflammatory actions through nuclear factor kB (NF-κB) signaling pathway. PRP and Wnt5a/PRP significantly inhibited the increase of the p-p65/p65 and p-IκB-α/IκB-α ratios. In vivo transplantation of Wnt5a/PRP gel was demonstrated to promote meniscus regeneration, while reducing OA of knee joint. Wnt5a with PRP had the anti-inflammatory activity in an IL-1ß-induced inflammatory model. They can synergistically improve the chondorgenic differentiation of meniscus cells. Wnt5a/PRP gel treatment could potentially be developed into a new method for meniscus regeneration and the prevention of OA.


Assuntos
Cartilagem Articular/patologia , Inflamação/patologia , Interleucina-1beta/toxicidade , Menisco/patologia , NF-kappa B/metabolismo , Plasma Rico em Plaquetas/metabolismo , Regeneração , Proteína Wnt-5a/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fêmur/efeitos dos fármacos , Fêmur/patologia , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Osteoartrite/patologia , Coelhos , Transdução de Sinais , Tíbia/efeitos dos fármacos , Tíbia/patologia
19.
Front Pharmacol ; 12: 799588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987409

RESUMO

Gold nanorods (GNRs) are intensively explored for the application in cancer therapy, which has motivated the development of photothermal therapy (PTT) multifunctional nanoplatforms based on GNRs to cure osteosarcoma (OS). However, the major limitations include the toxicity of surface protectants of GNRs, unsatisfactory targeting therapy, and the resistant effects of photothermal-induced autophagy, so the risk of relapse and metastasis of OS increase. In the present study, the GNR multifunctional nanoplatforms were designed and synthesized to deliver transcription factor EB (TFEB)-siRNA-targeting autophagy; then, the resistance of autophagy to PTT and the pH-sensitive cell-penetrating membrane peptide (CPP) was weakened, which could improve the tumor-targeting ability of the GNR nanoplatforms and realize an efficient synergistic effect for tumor treatment. Meanwhile, it is worth noting that the GNR nanoplatform groups have anti-lung metastasis of OS. This study provides a new reference to improve the efficacy of OS clinically.

20.
Biomed Pharmacother ; 131: 110541, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152901

RESUMO

PURPOSE: Osteosarcoma is a malignant musculoskeletal tumor with early metastasis and a poor prognosis, especially in adolescents. Ganoderma lucidum (Leyss. Ex Fr.) Karst (G. lucidum), a traditional East Asian medicine, has been reported to play a critical role in antitumor and immunomodulatory activity. The aim of this study was to investigate the effects and molecular mechanisms of water extract of sporoderm-broken spores of G. lucidum (BSGWE) on osteosarcoma PD-L1 (programmed cell death-ligand 1) transcriptional regulation, efficacy enhancement, and side effect remission. METHODS: The antitumor effects on cell proliferation of BSGWE in osteosarcoma cells were detected by apoptosis flow cytometry, and the migration ability of HOS and K7M2 cells were evaluated by cell scratch assay. Potential signaling regulation of PD-L1 was detected by western blotting. To confirm the signaling pathway of BSGWE-related PD-L1 downregulation, a pho-STAT3 turnover experiment was carried out. Colivelin was administered as a pho-STAT3 activator to rescue the BSGWE-induced PD-L1 inhibition. To further study in vivo signaling, in a Balb/c osteosarcoma allograft model, tumor volume was measured using an in vivo bioluminescence imaging system. The body weight curve and tumor volume curve were analyzed to reveal the remission effects of BSGWE on PD-L1 antibody-related body weight loss and its immunomodulatory effects on the osteosarcoma and spleen. The PD-L1 expression level and expression of related transcription-factor pho-STAT3 in tumor cells and spleens were assessed by IHC analysis. RESULTS: BSGWE suppressed the proliferation and migration of osteosarcoma cells in vitro via induction of apoptosis. In addition, BSGWE downregulated PD-L1 expression and related STAT3 (signal transducers and activators of transcription) phosphorylation levels in a dose-dependent manner. Western blotting and qRT-PCR assay revealed that BSGWE downregulated PD-L1 expression by inhibiting STAT3 phosphorylation. A turnover experiment showed that colivelin administration could rescue PD-L1 inhibition via pho-STAT3 activation. BSGWE not only downregulated PD-L1 expression via the STAT3 pathway in an allograft Balb/c mouse model, but also relieved complications including weight loss and spleen atrophy in a mouse monoclonal antibody therapy model on the basis of its traditional advantages in immune enhancement. CONCLUSION: BSGWE downregulated PD-L1 expression via pho-STAT3 inhibition of protein and RNA levels. BSGWE enhanced PD-L1 antibody efficacy via phosphorylated STAT3 downregulation in vitro and in vivo. BSGWE also relieved complications of weight loss and spleen atrophy in a murine allograft osteosarcoma immune checkpoint blockade therapy model.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Reishi , Animais , Anticorpos Monoclonais/efeitos adversos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Esporos Fúngicos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...